70 research outputs found

    SLE in the three-state Potts model - a numerical study

    Full text link
    The scaling limit of the spin cluster boundaries of the Ising model with domain wall boundary conditions is SLE with kappa=3. We hypothesise that the three-state Potts model with appropriate boundary conditions has spin cluster boundaries which are also SLE in the scaling limit, but with kappa=10/3. To test this, we generate samples using the Wolff algorithm and test them against predictions of SLE: we examine the statistics of the Loewner driving function, estimate the fractal dimension and test against Schramm's formula. The results are in support of our hypothesis.Comment: 32 pages, 41 figure

    Twist operator correlation functions in O(n) loop models

    Full text link
    Using conformal field theoretic methods we calculate correlation functions of geometric observables in the loop representation of the O(n) model at the critical point. We focus on correlation functions containing twist operators, combining these with anchored loops, boundaries with SLE processes and with double SLE processes. We focus further upon n=0, representing self-avoiding loops, which corresponds to a logarithmic conformal field theory (LCFT) with c=0. In this limit the twist operator plays the role of a zero weight indicator operator, which we verify by comparison with known examples. Using the additional conditions imposed by the twist operator null-states, we derive a new explicit result for the probabilities that an SLE_{8/3} wind in various ways about two points in the upper half plane, e.g. that the SLE passes to the left of both points. The collection of c=0 logarithmic CFT operators that we use deriving the winding probabilities is novel, highlighting a potential incompatibility caused by the presence of two distinct logarithmic partners to the stress tensor within the theory. We provide evidence that both partners do appear in the theory, one in the bulk and one on the boundary and that the incompatibility is resolved by restrictive bulk-boundary fusion rules.Comment: 18 pages, 8 figure

    Critical exponents of domain walls in the two-dimensional Potts model

    Full text link
    We address the geometrical critical behavior of the two-dimensional Q-state Potts model in terms of the spin clusters (i.e., connected domains where the spin takes a constant value). These clusters are different from the usual Fortuin-Kasteleyn clusters, and are separated by domain walls that can cross and branch. We develop a transfer matrix technique enabling the formulation and numerical study of spin clusters even when Q is not an integer. We further identify geometrically the crossing events which give rise to conformal correlation functions. This leads to an infinite series of fundamental critical exponents h_{l_1-l_2,2 l_1}, valid for 0 </- Q </- 4, that describe the insertion of l_1 thin and l_2 thick domain walls.Comment: 5 pages, 3 figures, 1 tabl

    Spin interfaces in the Ashkin-Teller model and SLE

    Full text link
    We investigate the scaling properties of the spin interfaces in the Ashkin-Teller model. These interfaces are a very simple instance of lattice curves coexisting with a fluctuating degree of freedom, which renders the analytical determination of their exponents very difficult. One of our main findings is the construction of boundary conditions which ensure that the interface still satisfies the Markov property in this case. Then, using a novel technique based on the transfer matrix, we compute numerically the left-passage probability, and our results confirm that the spin interface is described by an SLE in the scaling limit. Moreover, at a particular point of the critical line, we describe a mapping of Ashkin-Teller model onto an integrable 19-vertex model, which, in turn, relates to an integrable dilute Brauer model.Comment: 12 pages, 6 figure

    Fluctuation force exerted by a planar self-avoiding polymer

    Full text link
    Using results from Schramm Loewner evolution (SLE), we give the expression of the fluctuation-induced force exerted by a polymer on a small impenetrable disk, in various 2-dimensional domain geometries. We generalize to two polymers and examine whether the fluctuation force can trap the object into a stable equilibrium. We compute the force exerted on objects at the domain boundary, and the force mediated by the polymer between such objects. The results can straightforwardly be extended to any SLE interface, including Ising, percolation, and loop-erased random walks. Some are relevant for extremal value statistics.Comment: 7 pages, 22 figure

    General solution of an exact correlation function factorization in conformal field theory

    Full text link
    We discuss a correlation function factorization, which relates a three-point function to the square root of three two-point functions. This factorization is known to hold for certain scaling operators at the two-dimensional percolation point and in a few other cases. The correlation functions are evaluated in the upper half-plane (or any conformally equivalent region) with operators at two arbitrary points on the real axis, and a third arbitrary point on either the real axis or in the interior. This type of result is of interest because it is both exact and universal, relates higher-order correlation functions to lower-order ones, and has a simple interpretation in terms of cluster or loop probabilities in several statistical models. This motivated us to use the techniques of conformal field theory to determine the general conditions for its validity. Here, we discover a correlation function which factorizes in this way for any central charge c, generalizing previous results. In particular, the factorization holds for either FK (Fortuin-Kasteleyn) or spin clusters in the Q-state Potts models; it also applies to either the dense or dilute phases of the O(n) loop models. Further, only one other non-trivial set of highest-weight operators (in an irreducible Verma module) factorizes in this way. In this case the operators have negative dimension (for c < 1) and do not seem to have a physical realization.Comment: 7 pages, 1 figure, v2 minor revision

    Critical domain walls in the Ashkin-Teller model

    Full text link
    We study the fractal properties of interfaces in the 2d Ashkin-Teller model. The fractal dimension of the symmetric interfaces is calculated along the critical line of the model in the interval between the Ising and the four-states Potts models. Using Schramm's formula for crossing probabilities we show that such interfaces can not be related to the simple SLEκ_\kappa, except for the Ising point. The same calculation on non-symmetric interfaces is performed at the four-states Potts model: the fractal dimension is compatible with the result coming from Schramm's formula, and we expect a simple SLEκ_\kappa in this case.Comment: Final version published in JSTAT. 13 pages, 5 figures. Substantial changes in the data production, analysis and in the conclusions. Added a section about the crossing probability. Typeset with 'iopart

    Boundary conformal field theories and loop models

    Full text link
    We propose a systematic method to extract conformal loop models for rational conformal field theories (CFT). Method is based on defining an ADE model for boundary primary operators by using the fusion matrices of these operators as adjacency matrices. These loop models respect the conformal boundary conditions. We discuss the loop models that can be extracted by this method for minimal CFTs and then we will give dilute O(n) loop models on the square lattice as examples for these loop models. We give also some proposals for WZW SU(2) models.Comment: 23 Pages, major changes! title change

    Critical interfaces of the Ashkin-Teller model at the parafermionic point

    Get PDF
    We present an extensive study of interfaces defined in the Z_4 spin lattice representation of the Ashkin-Teller (AT) model. In particular, we numerically compute the fractal dimensions of boundary and bulk interfaces at the Fateev-Zamolodchikov point. This point is a special point on the self-dual critical line of the AT model and it is described in the continuum limit by the Z_4 parafermionic theory. Extending on previous analytical and numerical studies [10,12], we point out the existence of three different values of fractal dimensions which characterize different kind of interfaces. We argue that this result may be related to the classification of primary operators of the parafermionic algebra. The scenario emerging from the studies presented here is expected to unveil general aspects of geometrical objects of critical AT model, and thus of c=1 critical theories in general.Comment: 15 pages, 3 figure

    Critical behavior of interfaces in disordered Potts ferromagnets : statistics of free-energy, energy and interfacial adsorption

    Full text link
    A convenient way to study phase transitions of finite spins systems of linear size LL is to fix boundary conditions that impose the presence of a system-size interface. In this paper, we study the statistical properties of such an interface in a disordered Potts ferromagnet in dimension d=2d=2 within Migdal-Kadanoff real space renormalization. We first focus on the interface free-energy and energy to measure the singularities of the average and random contributions, as well as the corresponding histograms, both in the low-temperature phase and at criticality. We then consider the critical behavior of the interfacial adsorption of non-boundary states. Our main conclusion is that all singularities involve the correlation length ξav(T)∼(Tc−T)−ν\xi_{av}(T) \sim (T_c-T)^{-\nu} appearing in the average free-energy Fˉ∼(L/ξav(T))ds\bar{F} \sim (L/\xi_{av}(T))^{d_s} of the interface of dimension ds=d−1d_s=d-1, except for the free-energy width ΔF∼(L/ξvar(T))θ\Delta F \sim (L/\xi_{var}(T))^{\theta} that involves the droplet exponent θ\theta and another correlation length ξvar(T)\xi_{var}(T) which diverges more rapidly than ξav(T)\xi_{av}(T). We compare with the spin-glass transition in d=3d=3, where ξvar(T)\xi_{var}(T) is the 'true' correlation length, and where the interface energy presents unconventional scaling with a chaos critical exponent ζc>1/ν\zeta_c>1/\nu [Nifle and Hilhorst, Phys. Rev. Lett. 68, 2992 (1992)]. The common feature is that in both cases, the characteristic length scale Lch(T)L_{ch}(T) associated with the chaotic nature of the low-temperature phase, diverges more slowly than the correlation length.Comment: v2 : thoroughly rewritten paper with new title, new data and new interpretations (18 pages, 22 figures
    • …
    corecore